Astronomical Approximations. II, III. By Pliny Earle Chase, LL.D., Professor of Philosnply in Itaverford College.

(Read before the American Philosophical Society, Jan. 2, 1880.)

II. Velocity of Light, and Kirkwood's Analogy.

The cosmical undulations shonld produce effects at every centre of inertial reaction, which would furnish data for approximate determinations of the velocity of light. We lave seen that the favorable central position of the Earth, in the belt of greatest condensation, leads to a simple equation for Sun's apparent dianeter and, therefore, for finding the quotient of Earth's distance from Sun by Sun's semi-diameter. The accuracy of the result is confirmed by other inferences which may be drawn from the same data.

Kirkwond's Aualogy may be formulated thus:

$$
\begin{equation*}
\binom{\rho_{n}}{\rho_{0}}^{3} \times\binom{ \%_{0}}{\%_{n}}^{2}=\text { a constant } \tag{1.}
\end{equation*}
$$

Let ρ_{0} denote Sun's semi-diameter ; ρ_{1}, ρ_{2}, etc., the mean vector-radii of the several planets (Mercury ${ }_{1}$, Vents ${ }_{2}$, etc.); $:$, mass ; t, time of rotation synehronons with revolution at Laplace's limit; ν_{n}. number of rotations in ν_{0} orbital revolutions synchronous with primitive solar rotation ; v_{λ}, velocity of light ; v_{n}, velocity of revolution $(V g r)$ at the surface of planet ${ }_{n} ; r$, planetary radius; the subscript figures being applicable to μ, t, ν, r, and r. The actions and reactions of light-waves, between the nucleal centre (Sun) and the principal centre of primitive condensation (Earth), lead to the equation, similar to Kirkwood's :

$$
\begin{equation*}
\binom{\rho_{n}}{\rho_{0}}^{3} \times\binom{\nu_{0}}{\nu_{n}}^{2}=\binom{v_{n}}{0_{2}}_{\mu_{n}}^{2} \mu_{0}{ }^{2}-1 \times\binom{ t_{n}}{t_{3}}^{2} r_{n} r_{3} \cdot \tag{2.}
\end{equation*}
$$

For Earth, $\rho_{n}=\rho_{3}=214.84 \rho_{0} ; \nu_{n}=\nu_{3}=366.256^{\nu}{ }_{0} ; v_{n}=v_{3}=.0012$. $383 r_{3} ; v_{\lambda}=214.54 \rho_{0} \div 497.83=.43006 \rho_{0_{0}}$. Substituting, and taking the square root of equation (2), we get :

$$
\begin{equation*}
\frac{214.54^{\frac{3}{2}}}{366.256}=\frac{.0012383 r_{3}}{.43096 \rho_{0}} \times \mu_{\mu_{3}} \cdots \tag{3.}
\end{equation*}
$$

If we designate density by δ, mass varies as $r^{3} \hat{0}$, or an the square of $r{ }_{v}$. Therefore $\frac{\hat{\delta}_{3}}{\delta_{0}}=\left(\begin{array}{l}r_{0} \\ g_{0}\end{array} r_{3}\right)=\left(\frac{1 \text { year }}{214.54^{\frac{3}{2}}} \div 5074 \text { sec. }\right)^{2}=3.017 \%$. proc. AMEI, PHilos. SOC. XViIf. 105. 3c. Printed fel. $28,1880$.

Substituting in (3), dividing and reduciug:
$\left.\begin{array}{l}\frac{214.54^{\frac{3}{2}}}{366.256} \times \frac{.43096}{.0012383} \times 3.9175=\left(\frac{\rho_{0}}{r_{3}}\right)^{2} \\ 108.155 r_{3}=\rho_{0}=428,600 \text { miles. } \\ \\ \rho_{3}=214.54_{0}=91,950,000 \text { miles. } \\ { }_{\lambda}=\rho_{3} \div 407.83=184, \tau 10 \text { miles. }\end{array}\right\}$
If we suppose Sun to contract till Laplace's limit would correspond with Sun's present equatorial radius, the foregoing equations would all be deducible from the following:

$$
\left.\begin{array}{l}
\frac{\mu_{3} t_{3}}{\mu_{0} t_{0}}=\frac{v_{3}}{v_{\lambda}} \tag{5.}\\
\frac{\mu_{3}}{\mu_{0}} \times \frac{1 \mathrm{dy}}{.11624 \mathrm{dy}}=\frac{4.907}{184,710} \\
\mu_{0}=323,300 \mu_{3}
\end{array}\right\}
$$

In these first approximations no allowance has been made for orbital eccentricities, or for disturbances by the principal planets. I am, therefore, inclined to attach more importance to the following methods.

The equivalence of luminous action and reaction, between the mucleal centre $\left(c_{0}\right)$ and the principal centre of primitive condensation $\left(c_{3}\right)$, is shown by Earth's still retaining one-half of the original rupturing force. Aecording to Stnekwell, Earth's mean eccentricity is .03386\%6. If the rupturing locus is represented by mean perihelion, since the superficial velocity of rotation in a condensing nebula varies inversely as radius, the rupturing velocity was $\frac{1}{.9661324}$ times the mean velocity. The constant solar equation $g_{0} t_{0}=v_{i}$, would be satisfied in $.9661324 \times \frac{1}{2}$ yr., if we look only to solar gravity at the corresponding nucleal surface, or in .9651324 yr , if we look to initial terrestrial gravity as one-half of eorresponding solar gravity.

$$
\left.\begin{array}{l}
v_{1}=.9661324 \times 36 \pi .256 \times 86400 \times \frac{32.0874}{5280}=18 \mathrm{i}, 287 \text { miles } \tag{6.}\\
\mu_{3}=497.83 v, \\
\lambda
\end{array}\right\}
$$

In equathon (4), if we substitute Earth's memn solar day for the sidereal day, we get :

$$
\begin{array}{r}
\rho_{0}=\binom{366.256}{365.256}^{\frac{1}{2}} \times 428,600=429,200 \text { miles. } \\
\left.\begin{array}{l}
\rho_{s}=92,070,000 \text { miles. } \\
v_{\lambda}=181,970 \text { miles. }
\end{array}\right\} \ldots \ldots \ldots \ldots . \tag{7.}
\end{array}
$$

13y the well-kuown luws of elnsticity, M, the solne madulus of light, or the height of a homogeneous wethereal ntmosphere, at Sun's surface, which
would transmit undulations with the velocity of light, is $\binom{0}{i}^{2} \rho_{0}$. This is equivalent to $\left(\frac{.43096}{.00062563}\right)^{2} \rho_{0}=47,50 \rho_{0} \rho_{0}$ For v_{2}, as we have already seen, is $.43096_{1} 0_{0}$, and v_{0} is $\frac{2 \pi \rho_{3} \times(214.54)^{\frac{1}{2}}}{365.256 \times 80400} \times \frac{214.54 \rho_{0}}{\rho_{3}}=.00062563 \rho_{0} 0_{0}$. If the cyclical variations of alternately increasing and diminishing stress, to which every particle of the Sun is exposed during each half-rotation, are due to the velocity of light, the equations, $\frac{g_{0} t_{0}}{2}=v_{i}$, and $\vee g_{0} \rho_{0}=.0006$ $2563 \rho_{0}$, give :

$$
\left.\begin{array}{l}
g_{0}=.00000039142 \rho_{0} \tag{8.}\\
t_{0}=\frac{2 \times .43096 \rho_{0}}{g_{0}}=2,202,050 \mathrm{sec} .=25.486 \mathrm{dy} .
\end{array}\right\}
$$

The continual disturbances at Suin's surface, and the combined influences to rotation and revolution upon spots near the solar equator, make it impossible to find the exact value of t_{0} by direct observation. Laplace's estimate was $25 \frac{1}{2}$ days; Carrington's $2 \bar{i} .38$ days. According to his observations, "near the equator the period was about 25.3 days, while it was a day longer in 30° latitude. Moreover, the period of rotation seems to be differeut at different times, and to vary with the frequency of the spots. But the laws of these variations are not yet established. In consequence of their existence, we cannot fix any definite time of rotation for the Sun, as we can for the Earth and for some of the planets. It varies at different times, and under different cireumstances, from 25 to $26 \frac{1}{2}$ days." *

It is, therefore, impossible now to assign any more probable value to t_{0} than the one which I have deduced theoretically from the stress of luminous wives. If future observations should lead to the acceptance of a period which is either slightly less or slightly greater, the discrepancy can be easily accounted for, either by orbital acceleration or by inertial resistance and retardation.

If ρ_{a} represents Stoekwell's determination of the centre of the belt of greatest condensation ($\left.1.016878,_{3}=218.16 n_{0}\right)$ and if we suppose a similarity of action and reaction at the nucleal centre (Sun's centre $=c_{0}$) and at the clense-belt centre $\left(c_{a}\right)$, we find :

$$
\begin{aligned}
& \left(\frac{M}{\mu_{0}}\right)^{\frac{1}{2}} \times\left(\frac{\rho_{a}}{\rho_{0}}\right)^{\frac{1}{2}}=\frac{1}{1} \frac{y r}{d y} \times \frac{q_{0}}{g_{3}} \\
& (474500 \times 1.016878 \times 214.54)^{\frac{1}{2}}=366.250 \frac{q_{0}}{g_{3}} \\
& g_{0}=27.78 g_{3} \\
& \rho_{0}=\frac{g_{0} \delta_{3}}{g_{3} \delta_{0}} r_{3}=27.783 \times .9175 \times 3962.8=431,250 \text { miles. } \\
& \rho_{3}=214.54 \rho_{0}=92,520,000 \text { miles. } \\
& v_{\lambda}=185,850 \text { miles. }
\end{aligned}
$$

*Newcomb: Popular Astronomy, 1. 250.

The influence of luminous undulation is also shown by the principal planet of the light belt (Jupiter), which is also the controlling planet of the systen. For the time required by light, to traverse the linear orbit $\left(4 \rho_{5}\right)$ which would be synchronuus with Jupiter's orbit, is equivalent to the time of satellite revolution at Jupiter's surface $\left(2 \pi \sqrt{\frac{r_{5}}{g_{5}}}\right)$.
$4 \times 5.2028 \times 497.820=10360.24=2 \pi \sqrt{\frac{\sigma_{5}}{g_{5}}}$
$\frac{i_{n}}{\hat{i}_{5}}=\binom{10360}{10043}^{2}=1.0642$
$\frac{r_{0}}{r_{0}}=(1047.875 \div 1.0642)^{\frac{1}{3}}=9.9485$
$\left.r_{5}+1017.875-1.0013\right)^{3}=0.0185$
$\frac{g_{0}}{g_{5}}=1047.875 \div(9.9485)^{2}=10.587$
$\frac{\nu_{5}}{\%_{0}}=11.86 \times 365.256 \times 24^{h} \div 9^{h} 55^{m} 26^{8} \cdot 0^{*}=10477.56$.
$\frac{v_{2}}{v_{5}}=(10.587 \times 9.9485)^{\frac{1}{2}} \times 688.84=7069.5$
$\frac{t_{3}}{t_{5}}=24^{h} \div 9^{h} 55^{-m} 26^{s} .5=2.4183$.
Substituting in (2); $(5.2028 \times 214.54)^{3} \div(104 \pi \% .56)^{2}=\frac{104 \% .88}{7060.5^{2}} \times$

$$
\left(\frac{1}{2.4183}\right)^{2} \times \frac{\mu_{0} r_{3}}{\mu_{3} r_{3}}
$$

Multiplying by $\frac{r_{n}}{r_{5}}=9.9485$, and reducing ; 13\%718750 $=\left(\frac{r_{0}}{r_{3}}\right)^{4}$
$\rho_{0}=108.83 r_{3}=429,300$ miles .
$P_{3}=214544_{0}{ }_{0}=92,100,000$ miles.
${ }^{v} \lambda_{\lambda}=.48096 \rho_{0}=185,000$ miles.
The experiments which are now in progress, for measuring the velocity of light, may lend interest to the following compantive tabulation, in kilometers, of some of the most important approximations to the velocity.

By the Nebular Hypothemls.
From Kỉkwood's Analogy, (4) $20 \%, 254$ kil.

-Than is the thme of Juplter's rotation, as glven by lrofersor Asaph Halt.

All the elements for the foregoing caiculations can be measured with much greater accuracy than the solar parallax, the position of the moon's centre, cometary disturbance, or any other similar astronomical data. The identification of luminous and electro-magnetic action, by Weber, Kohl. rausch. Thomsou, Maxwell, und Perry and Ayrton, together with Peirce's investigations of the influence of repulsive force in the miniature worldbuilding of cometary nuclei,* lead me to lope that further research will show what modifications are needed in order to secure exact astronomical measurements, by means of the equal action and reaction of opposing forecs.

III. Controlling Centres.

The principal sentre of gravity in the solar system (Jupiter-Sun), is at $5.2028 \times 214.54 \rho_{0} \div 1047.88=1.00522 \rho_{0}$. The ratio of synchronous lineal and circular orbits $=\frac{2}{\pi}$. The wave-velocity which counteracts Earth's semi-diurnal variations of stress, is $v_{\beta}=\frac{32.08 \times 43082}{5250}=261.76$ miles. Equating radial (numerator) and tangential (denominator) influences, we find :

$$
\left.\begin{array}{l}
\frac{{ }_{2}}{v_{\beta}}=\frac{2}{\pi} \times \frac{1.0655_{0}}{\mu_{3}} \tag{1.}\\
v_{\lambda}=186,025 \text { miles. } \\
\mu_{s}=92,600,000 \text { miles. }
\end{array}\right\}
$$

At any given distance from cosmical centres the orbital influence is proportioned to the mass. Hence the equation :

$$
\left.\begin{array}{l}
\frac{v_{1}}{v_{3}} \times \frac{v_{3}}{v_{3}}=\frac{\mu_{5}}{\mu_{3}} \tag{2.}\\
\frac{186,025}{261.76} \times \sqrt{\frac{1}{5.2028}=311.56} \\
\frac{\mu_{0}}{\mu_{3}}=311.56 \times 1047.88=320,500
\end{array}\right\}
$$

A similar reciprocity, introducing some firther interesting considerations, may be found by looking to the centre of reciprocal nebular rupture, Nep. tunc's secular perihelion. Adopting Stockwell's value of Neptune's greatest eccentricity (.014.5066), and taking the mean between Stockwell's (30.03386) and Newcomb's (30.05437) estimates of Neptune's mean radius-vector, Neptune's secular perihelion (ω) is at $3 \pi^{2} \rho_{3}$. Both the linear centre of oscillation and the collisions of subsiding particlest tend to produce cosmi-

[^0]cal aggregations at $\frac{2}{3} r$. This tendeney, considering ω as a centre, would rix the boundary of the belt of retrogradely rotating planetsat $\frac{1}{3} \omega=\pi^{2} \rho_{3}=$ $9.569 . \rho_{3}$, or between Saturn's mean and aphelion positions, so that Saturn well represents the surface of the belt of directly rotating planets: When the rotating wave-velocity (20) was operating in Suturn's orbit (at $\frac{(1)}{3}$) the orbital velocity $\left(\frac{\omega}{\pi}\right)$ was found at $\left(\frac{\omega}{3 \pi}=\pi\right) \rho_{3}$, or in the asteroidal belt (3.142), nearly midway between the mean perihelion of Mars (1.403), and the secular perihelion of Jupiter (4.586 , and also nearly midway between Earth's secular aphelion (1.068), and Jupiter's mean distance (5.203), as well as between the mean aphelia of Venus (.774), and Jupiter (5.519). The next change of wave-rotating to orbital velocity brings us to Earth, the central and greatest mass in the belt of greatest condensation. If we start from 2^{ω}, the surface of early sulsidenee which would give orbital velocity at ω, all these relations may be cmbodied in the equation :
\[

$$
\begin{align*}
& \left(\frac{v^{i^{2} r_{3}}}{g_{0} \sqrt{r_{0} r_{3}}}\right)^{2}=6 \pi^{2} \\
& \binom{688.84}{1698 \%}^{2} \times \frac{g_{3}}{g_{0}}=59.217 \\
& 27.7857_{3}=g_{0}
\end{align*}
$$
\]

By Eq. II., (9); $\rho_{3}=92,540,000$ miles.

$$
\mu_{0}=329,200 \mu_{3}
$$

The action and reaction between the reciprocal centre (Nepinue) and the centre of condensation (Earth), are also shown in the ratio between v_{3} and the velocity of terrestrial rotation $\left(v_{3}\right)$:

$$
\left.\begin{array}{l}
\frac{v_{3}}{\mu_{3}}=\frac{4.907}{2.289}=16.982 \\
\frac{\mu_{3}}{\mu_{8}}=\frac{v_{3}}{v_{3}} \tag{4.}\\
\frac{\mu_{0}}{\mu_{8}}=\frac{329,200}{16.982}=19,385
\end{array}\right\}
$$

Newcomb's estimute for $\frac{\mu_{n}}{\mu_{n}}$, as deduced from observations on Neptune's satellite, is $19,380 \pm 70$. 13y combining (4) with Eq. (11) in "Further Conflrmations of Prediction," * we flad the equation between moments of reciprocal rotution $\left(\frac{\mu}{\mu^{2}}\right)$ and times of synchronous rotation and revolu-$\operatorname{lion}\left(2-\sqrt{\frac{r}{g}}\right)$

[^1]\[

\left.$$
\begin{array}{l}
\frac{\mu^{3} \rho_{8}{ }^{2}}{\mu_{5} \rho_{3}{ }^{2}}=\frac{\mu_{0} t_{3}}{\mu_{3} t_{0}} \tag{5.}\\
\frac{19,385 \rho_{8}{ }^{2}}{329,200 \rho_{3}{ }^{2}}=\frac{329200 \times 5074 \mathrm{scc}}{1 \times 31558150 \mathrm{scc} .} \\
\rho_{8}=29.9936 \rho_{3}
\end{array}
$$\right\}
\]

The Saturnian orbit embraces the primitive centre of rotating inertia ; Saturn's mean position laving been influenced by the locus of reciprocal rupture (Neptune's $m . p .^{*}$), the two chicf points of incipient condensation (Jupiter's s. a. and Saturn's 8. a.), and the mean positions of the other planets, as will be seen by the following table, in which Sun's mass = $10,000,000,000$:

Saturn's mean radius-vector is $9.539 \rho_{3}$. The above result, therefore, indicates a slight preponderance, beyond the orbit of Neptune, of the unknown cosmical matter in our system. If the influence of all this unknown preporderance is equivalent to that of a mass about $\frac{3}{4}$ as great as Eartl, at the locus of incipient subsidence ($2 \omega=6 \pi^{2} \rho_{8}$), the mean moment of nebular rotation of each planet is represented by Saturn's mean position.

μ	$m\left(\rho_{n} \div \rho_{3}\right)$	$\mu \mu^{2}$
1	.3871	308
2	.7233	12,246
3	1.0000	30,600
4	1.5237	7,506
5	5.2028	$258,317,647$
6	9.5388	$259,85,941$
7	19.1834	$162,837,000$
8	30.0339	$465,444,000$
\mathbf{x}	59.2170	$76,446,000$

[^2]

The ratio of Uranus to Neptune appears to have been determined by the incipient condensation of the system. For orbital velocity is proportioned to $\left(\frac{\mu}{\rho}\right)^{\frac{1}{3}}$; therefore, for any constant initiatory velocity, like v_{λ}, mass is proportioned to the radius of equal orbital velocity, or inversely to the $\frac{2}{3}$ power of the relocity of reciprocal orbital revolution, or to the cube root of the dislance from the Sun. Designating the locus of incipient condensation (Neptune's secular aphelion) by ρ_{γ}, we find

$$
\left.\begin{array}{l}
\mu_{7}\left(\rho_{\gamma}\right)^{\frac{1}{3}}=\mu_{8}\left(\rho_{7}\right)^{\frac{1}{3}} \tag{8.}\\
\mu_{7}(30.4696)^{\frac{1}{3}}=\mu_{0}^{(19.1834)^{\frac{1}{3}}} 19385 \\
\frac{\mu_{0}}{\mu_{7}}=22618
\end{array}\right\}
$$

Newcomb's estimate of $\frac{\mu_{0}}{\mu_{7}}$ is 22600 ± 100.
The inner retrogradely-rotating planet (Uranus) is connected with the belt of directly-rotating planets by the two proportions:

$$
\left.\begin{array}{l}
\mu_{7}: \mu_{5}:: \rho_{3(3)}: \rho_{\pi(3)} \tag{9.}\\
\mu_{7}: \frac{\mu_{0}}{1047.88}:: .9661: 20.044 \\
\frac{\mu_{0}}{\mu_{7}}=\frac{20.044 \times 1047.88}{.9661}=22530 \\
\mu_{7}: \mu_{3}:: v_{0(a)}: v_{0,3)} \\
\frac{\mu_{0}}{22530}: \mu_{3}:: V^{/ 214.54}: \sqrt{1.019256} \\
\frac{\mu_{0}}{\mu_{3}}=\sqrt{\frac{214.54}{1.019256} \times 22530=320,900}
\end{array}\right\}
$$

In equation (9). $\rho_{s 3}=$ Farth's mem peribelion $; \rho_{\text {ma }}=$ mean aphelion of Urunus. In equation (10), $v_{\text {o(a) }}=$ velocity of projection at the mean perihelion centre of gravity of Sun and Jupiter (5.2028 $\times 214.54 \times .9568 \cdot 1$ $\rightarrow 1047.88=1.019250) ; v_{0(3)}=$ Emrth's mean orbitnl velocity. The influence of Jupiter's mean peribelion position will be further shown in the following comparisons (13,14).

In the carly elllpsoldal or trancately parabokoidal nucleus indicated by Pefreces comblary mad meteoric researches, of which Uranus (19.1836)
represents the perilielion, and Neptune (30.034) represents the aphelion, Jupiter's mean aphelion (5.4274) was central.

The centre of reciprocal rupture (Neptune's secular aphelion $=30.47$), the paraboloidal centre (Jupiter's secular aphelion $=5.52$), and the centre of the dense belt (Earth $=1$), are connected by the geometrical proportion

$$
1: 5.52:: 5.52: 30.47 \text { (11.) }
$$

The masses at the centres of rotary inertia (Saturn), and of early nebulosity (Jupiter,, are proportioned to their respective gravitating tendencies towards the nucleal centre (Sun), or inversely proportioned to the squares of their vector-radii, so that their primitive moments of rotary inertia were equal.

$$
\left.\begin{array}{l}
\mu_{8} \rho_{5}{ }^{2}=\mu_{G} \rho_{G}{ }^{2} \tag{12.}\\
5.2028^{2} \mu_{0}=\mu_{6} \times 9.5388^{2} \\
1047.88 \\
\frac{\mu_{0}}{\mu_{6}}=3522.3
\end{array}\right\}
$$

Bessel's value is 3501.6 , so that the theoretical mass is about .006 too sinall. This approximation, which was first pointed out by Professor Stephen Alexander, convinced me that all the cosmical masses must be determined by ascertainable laws, and fhus led me to the results which ure embodied in the present and previous communications.

The ratio between the masses at the centre of rotary inertia (Saturn), and at the centre of greatest condensation (Earth), appears to have been determined by Jupiter's peribelion influence and by centrifugal force, since the masses vary nearly inversely as their gravitating tendencies towards the Sun, or directly as the squares of their vector radii.

$$
\left.\begin{array}{l}
\frac{\mu_{6} \rho_{3}^{2}}{\rho_{a}}=\frac{\mu_{3} o_{6}^{2}}{\mu_{0}} \tag{13.}\\
\frac{\mu_{0}}{3522.3 \times 1.019256}=\mu_{3} \times 9.5388^{2} \\
\frac{\mu_{0}}{\mu_{3}}=320,661
\end{array}\right\}
$$

The ratio between the masses at the nueleal centre (Sun), and at the centre of primitive nebulosity (Jupiter), combines the projectile, the centrifugal, and the square of the centripetal ratios, thus illustrating the thermodynamic law that equal quantities of heat correspond to equal increments of vis viva in simple gases.

$$
\left.\begin{array}{l}
\frac{\mu_{0}}{\mu_{5}}=\left(\frac{\mu_{5}}{\mu_{6}}\right)^{2} \times \frac{\mu_{5}}{\mu_{3}}=\left(\frac{\rho_{6}}{\rho_{6}}\right)^{4}\left(\frac{\rho_{6}}{\mu_{3}}\right)^{2} \times \frac{\rho_{a}}{\mu_{0}} \tag{14.}\\
\mu_{0}=\frac{9.5388^{6} \times 1.019256}{5.2028^{4}} \\
\mu_{5}
\end{array}\right\}
$$

The centrifugal ratios between Saturnand Earth (13), and the centripetal ratios between Saturn and Jupiter (12), are further illustrated by the phoc. AMER. PHILOS. SOC. XVIII. 105. 3D. PRINTED FEB. 28, 1880.
rector-radii of the centre of inertia and the centre of nebulosity. For, if we take a locus at $\frac{9}{11}$ of ρ_{6}, ρ_{5} is at $\frac{2}{3}$ of the locus, or at the centre of subsidence collision and the centre of linear oscillation, while the locus itself is at the centre of projection due to Saturn's spherical vis vicu $\left(.4\right.$ of $\left.\frac{5}{11}=\frac{2}{11}\right)$.

$$
\begin{equation*}
\frac{6}{11} \text { of } 9.5388=5.20298 . \tag{15.}
\end{equation*}
$$

This approximation gives a value for Jupiter's mean radius-vector which is only about ${ }_{290}^{1}$ of one per cent. too large.

In the dense belt, the moment of rotary inertia ($/ 2 \cdot \gamma^{2}$) of Mars $(\%, 506)$ is $\frac{1}{4}$ of Earth's $(30,600)$, while that of Venus $(12,246)$ is .4 of Earth's, thus indicating the influence of Sun's mean spherical moment of inertia, when expanded to Earth's orbit. The uncertainty with regard to Mereury's mass is too great to warrant any present speculation as to its origin, or its influence on the stability of the system.

The principal considerations, iuvolved in these approximations, are :

1. Foutier's theorem, that every periodic vibratory motion can always be regarled as the sum of a certatin number of pendulum vibrations.
2. The natural alternation of radial ard tangential oscillations, in elastic media surrounding centres of inertiat.
3. Maxwell's theorem of equality between vires vice of translation and vires vivar of mation.
4. Equality of action and reaction, especially in centripetal and centrifugal tendencies.
5. Perihelion indications of primitive centrifugal or rupturing force, and aphelion indications of primitive centripetal "subsidence."
6. Synchronism of rectilinear (4r) and circular ($2 \pi r$) orbits.
7. The tendency of nodes in elastic media to establish larmonic nodes.
8. The laws of elasticity which connect arithmetical ratios of distance, with geometric and harmonic ratios of density.
9. The different variability, in condensing nebula, of times of rotation ($\propto r^{2}$) and times of revolution ($\propto r^{2}$).
10. Laplace's limitation of rotating elastic stress, by the rudius of equal times of rotation and revolution.
11. Thue countoraction of the cyclical variations of stress, during each half-rotation, by the central force (g), after thes ambogy of projectiles from the Earth's surlice.
12. The constancy, ut the nueleal surface of any expanding or contracting nebula, of the stress-opposing value $\frac{g t}{2}$.
13. The undeney, in the primitive rupture of a nelula, to rotations in oppusile dhections.
14. The continual reeiprocal action, between attracting centres, $\left(g \propto \frac{\mu}{d^{2}}\right)$ of disturbances proportional to mass.
15. The limiting influence of parabolic velocities, upon tendencies to dissociation and to aggregation.
16. The ratio of stress-opposing force, at Laplace's limit, to parabolic $\left(\frac{\pi}{\sqrt{2}}\right)$ and to orbital ($\bar{\pi}$) velocity.
17. The influence of centres of linear and of spherical oseillation.
18. The conjoint influence of centres of nucleation, of density, of nebulosity, of rotary inertia, and of reciprocity.
19. The equations of relation between oscillatory and orbital motion.
20. The interesting and suggestive Fact, important in chemistry and general physies as well as in astronomy, that the central stress-opposing value in the solar system $\left(\frac{g t}{2}\right)$ is the velocity of light.

The Relations of the Crystalline Rochs of Eastern Pennsylvania to the Silurian Limestones and the Hudson River Age of the Hydromice Schists. By Chailes E: Ilitl. With " Piate.
(Read before the American I'hilosophical Society, January 2, 1880.)
Recently Prof. Frazer called the attention of the Academy of Natural Sciences to the fact of the occurrence of the fossil Buthotrephis flexuosa in the Peach Bottom roofing slates of York county, Pennsylvania. As Prof. Lesquereux admits that this fossil does not extend below the Trenton limestone, it is in all probability within the Hudson river group. Dr. Emmons assigned this fossil to the Taconic System. Since Dr. Emmons' time, I think the fossiliferous bed of the Taconic system lave been pretty well proven to be of the Cambrian series, which would place this Taconic fossil of Emmons somewhere about the Indson river group.
I embrace this opportunity to state some facts from which I have drawn conclusions concerning the relative positiuns of the rocks forming the erystalline series of Eastern Pennsylvania.

I shall endeavor to make my statements concise, and I think my reasoning will be understood.
We lave the following series of rocks:
First. A series of granitoid, syenitic, quartzose, and micaceous schistose rocks, to be seen on the Delaware river above the city bridge at Trenton, and extending in a south-easterly belt across Bucks and Montgomery countles, as fir west as Chestnut Hill, Philadelphia.

Seconả. A series of syenitic, hornblendic and quartzose rocks extending from the neighborhood of Chestunt IIill westward across the Schuylkill river, and covering a greater part of the northern portion of Delaware county. Fine exposures of this rock are be seen on the Schuylkill river below Spring Mill, Montgomery county. This series may be the upper members of the first, or that extending from the Delaware river to Chestnut Hill.

[^0]: *Trans. Amer. Acad., 1850. \dagger Ante, $\mathrm{xvil}, 100$.

[^1]: - 11), x vill, 211.

[^2]: * a, aphellon ; p, perlhelion; m, mean ; s, seeular.

